Transporters for cationic amino acids in animal cells: discovery, structure, and function.
نویسندگان
چکیده
The structure and function of the four cationic amino acid transporters identified in animal cells are discussed. The systems differ in specificity, cation dependence, and physiological role. One of them, system y+, is selective for cationic amino acids, whereas the others (B[0,+], b[0,+], and y+ L) also accept neutral amino acids. In recent years, cDNA clones related to these activities have been isolated. Thus two families of proteins have been identified: 1) CAT or cationic amino acid transporters and 2) BAT or broad-scope transport proteins. In the CAT family, three genes encode for four different isoforms [CAT-1, CAT-2A, CAT-2(B) and CAT-3]; these are approximately 70-kDa proteins with multiple transmembrane segments (12-14), and despite their structural similarity, they differ in tissue distribution, kinetics, and regulatory properties. System y+ is the expression of the activity of CAT transporters. The BAT family includes two isoforms (rBAT and 4F2hc); these are 59- to 78-kDa proteins with one to four membrane-spanning segments, and it has been proposed that these proteins act as transport regulators. The expression of rBAT and 4F2hc induces system b[0,+] and system y+ L activity in Xenopus laevis oocytes, respectively. The roles of these transporters in nutrition, endocrinology, nitric oxide biology, and immunology, as well as in the genetic diseases cystinuria and lysinuric protein intolerance, are reviewed. Experimental strategies, which can be used in the kinetic characterization of coexpressed transporters, are also discussed.
منابع مشابه
Metal-Ion-Coordinating Properties of Various Amino Acids, Investigation of the Essential Function in Biological Systems regarding to their Nano-Structure
The acidity constants of some amino acids (Am) were determined by potentiometric pH titration. The stability constants of the 1:1 complexes formed between M2+: Ca2+, Mg2+, Mn2+, Co2+, Ni2+, Cu2+ or Zn2+ and Am2-, were determined by potentiometric pH titration in aqueous solution (I = 0.1 M, NaNO3, 25°C). The order of the stability constants was reported. It is shown that the stability of the bi...
متن کاملMembrane transporters for the special amino acid glutamine: structure/function relationships and relevance to human health
Glutamine together with glucose is essential for body's homeostasis. It is the most abundant amino acid and is involved in many biosynthetic, regulatory and energy production processes. Several membrane transporters which differ in transport modes, ensure glutamine homeostasis by coordinating its absorption, reabsorption and delivery to tissues. These transporters belong to different protein fa...
متن کاملAN INDEX REPRESENTING STRUCTURE-CATABOLIC FATE RELATIONSHIPS OF AMINO ACIDS
Based on the Randic suggestion of the resolution of a structure into shape, size, and function an index representing structure-catabolic fate relationships of amino acids is constructed. The index obtained by multiplying three factors; (nb2 + nr), nc and M; representing shape, size and function respectively, where nb2 = number of double bonds, nr = number of rings, nc = number of carbon atoms, ...
متن کاملSystem N in eNdothelium.
AMINO ACIDS ARE THE ELEMENTS of protein structure, and their side chains largely determine the function of the proteins they constitute. Some amino acids, such as glycine and glutamate, are important neurotransmitters. Some are metabolized to signaling molecules such as glutamate to -aminobutyric acid (GABA) and arginine to nitric oxide (NO). Amino acids participate in the urea cycle and NH4 me...
متن کاملMolecular biology of mammalian plasma membrane amino acid transporters.
Molecular biology entered the field of mammalian amino acid transporters in 1990-1991 with the cloning of the first GABA and cationic amino acid transporters. Since then, cDNA have been isolated for more than 20 mammalian amino acid transporters. All of them belong to four protein families. Here we describe the tissue expression, transport characteristics, structure-function relationship, and t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physiological reviews
دوره 78 2 شماره
صفحات -
تاریخ انتشار 1998